The International Tree Slime Project

DNA barcoding of fungal volcanoes

Keith Seifert, Tom Gräfenhan, Kathie Hodge, Brett Summerell, Yosuke Degawa, Wendy McFadden-Smith

Slime nodes (an international consortium studying a microbial consortium):

1. Biodiversity (Mycology & Botany), Agriculture and Agri-Food Canada, Ottawa, ON, Canada (wendy.mcfadden-smith@agr.gc.ca)
2. Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, Canada (tom.graefenhan@grainscanada.gc.ca)
3. Department of Plant Pathology, Cornell University, Ithaca, NY, USA (www.cornell.edu)
4. Royal Botanic Gardens, Sydney, NSW, Australia (brett.summerell@rbgsyd.nsw.gov.au)
5. Sugadaira Montane Research Center, University of Tsukuba, Nagano, Japan (degawa@sugadaira.tsukuba.ac.jp)
6. Ontario Ministry of Agriculture and Food, Vineland, ON, Canada (wendy.mcfadden-smith@ontario.ca)

Introduction

Spring sap flux, visible as copious pink, orange or yellow slime oozing from cut or wounded surfaces of deciduous trees, is a conspicuous feature of temperate forests. The exudates are prolifically colonized by fungi including yeasts, zygomycetes and hyphomycetes, which metabolize monosaccharides (as much as 5% w/v) moving from the roots to the leaves of the trees. The microbiology of these slime fluxes has been fairly well-studied in Europe (Weber 2006), but little studied elsewhere. The dramatic appearance of these slime fluxes makes them the subject of fascination for the Citizen Scientist (www.youtube.com/watch?v=IPEIMjgJ4iQ). Beyond that, their sometimes dramatic occurrence on fruit trees, such as wine grapes, leads to questions from growers that can be difficult to answer with convincing scientific data.

With that in mind, the authors of this poster are initiating a broad, barcoding-enabled inventory of the fungal species growing in this niche on an international scale. We invite all participants in this conference to participate by watching for slime fluxes in their own countries next spring, and submitting samples to one of the Slime Nodes identified above. Or, exercise your own biological imperative, and examine the fluxes for the organisms that tickle your own fancy; nematodes, mites, flies (which are said to eat the yeasts!), bacteria. This bizarre biological phenomenon could present a fun opportunity for intertaxonomic collaboration!

Phyllogenetic diversity

![Phylogenetic diversity tree](image)

Fig. 1. Macroscopic examining slime flux on Compsu sp., Japan.

Fig. 2. Canis lupus examining slime flux on Ostrya virginiana, Canada.

Fig. 3. Phylogenetic placement of some Tree Slime fungi in the Fungal Kingdom.

![Phylogenetic tree](image)

Fig. 4. Slime fluxes from the USA (4, 5), and on grapes (6, 7) and Ostrya virginiana, Canada.

The culprits so far

- **Fusarium nigrum** (order Dothioraceae) is common world-wide on dead plant material, and is now believed to be an endophyte. ITS barcodes suggest that this is a complex of 6 or 7 morphologically cryptic species.
- **Microbotryum viosae** (family Mucorales) was isolated from the grape fungus flux shown in Figs 6, 7. Although closely related to the plant pathogens in this important mycotoxin producing genus, the species is not considered pathogenic, and so far is not considered a species complex.
- **Cryptococcus albans** is one of the basidiomycetous yeasts that are so common in slime fluxes, and give the gas most of its orange colour. Despite the benign, limpid appearance, these ‘Killer Yeasts’ exude toxins that kill other species of yeast.

How to Sample

Important Note: Before sending samples to a Slime Node, please email the nearest coordinator and ask for complete instructions. Do not send samples across international borders without obtaining the required permits.

Sampling method. Photograph the tree and if possible identify the species, record when and where you found your specimen. Use a clean (preferably sterile) cotton swab, e.g. Q-tip, and dip it in the slime. To reduce bacterial growth, keep the swab cold in a refrigerator until delivery. If this is not possible, try a gently air drying the swab, without heat, until the slime is crusty and not sticky, wrap it in a clean paper, then put it in a small plastic bag to stop leaking, but do not seal the bag, or b) if you work in a lab, stir the swab in 1 mL sterile water in a 2 mL plastic screw cap vial, and seal it well. Send the samples by mail or courier to the friendly neighborhood Slime Node that has agreed to accept it. We will isolate all the fungi we can by dilution and streak plating, arrange for DNA barcoding, and inform you of results as they come in.